



### Alpha ESS Co., Ltd.

- **8** +86 513 8060 6891
- ™ info@alpha-ess.com
- www.alpha-ess.com
- 🛅 JiuHua Road 888, High-Tech Industrial Development Zone 226300 Nantong City, Jiangsu Province

## Alpha ESS Europe GmbH

- **1** +49 610 3459 1601
- ≥ europe@alpha-ess.de
- www.alpha-ess.de
- 🚹 Paul-Ehrlich-Straße 1a 63225 Langen

### Alpha ESS Italy S.r.l.

- **1** +39 599 239 50
- info@alpha-ess.it

   info@alpha-ess.
- www.alpha-ess.it
- M Via Loda,17-41013 Castelfranco Emilia(MO)

## Alpha ESS UK Co., Ltd

- Trake House, Long Street, Dursley, gl11 4hh

# Alpha ESS Korea Co., Ltd

www.alpha-ess.com.au

Alpha ESS Suzhou Co., Ltd.

Alpha ESS Australia Pty. Ltd.

Building 10-A, Canal Town Industrial Park,
99 Taihu E Rd, Wuzhong District, Suzhou 215000

**1** +86 512 6828 7609

www.alpha-ess.com

**1** +61 1300 968 933

- **1** +82 64 721 2004
- korea@alpha-ess.com
- ⚠ 2F, 19-4, Nohyeong 11-gil, Jeju-si, Jeju-do, Republic of Korea

Unit 1, 2 Ralph Street Alexandria NSW 2015

## Alpha ESS International Pte. Ltd.

- ✓ Singapore@alpha-ess.com
- ⚠ Blk 55 Ayer Rajah Crescent #01-01, Singapore 139949

# Alpha ESS USA, Inc.

- ₩ USA@alpha-ess.com
- 638 S Ahwanee Ter Sunnyvale, California, 94085 United States of America

# INSTALLATION MANUAL OF ENERGY STORAGE SYSTEM (ESS)

STORION-T50/T100 (INDOOR, WITH M38210-S)



# **Copyright Statement**

This manual is under the copyright of AlphaESS Co., Ltd, with all rights reserved. Please keep the manual properly and operate in strict accordance with all safety and operating instructions in this manual. Please do not operate the system before reading through the manual.

# **CONTENT**

| 01        | INTRODUCTION                                                    | 01 |
|-----------|-----------------------------------------------------------------|----|
|           | Introduction ······anation of Terms ·····                       |    |
| 02        | SAFETY INSTRUCTIONS                                             | 03 |
| 2.1 Keep  | the Manual ·····                                                | 03 |
| 2.2 Oper  | rator Requirements                                              | 03 |
| 2.3 Prote | ection of Warning Sign ·····                                    | 03 |
| 2.4 Setti | ng of Warning Sign for Safety ·····                             | 04 |
|           | Line Measurement ·····                                          |    |
| 2.6 Meas  | suring Equipment ·····                                          | 04 |
|           | rostatic Prevention ·····                                       |    |
|           | ture Prevention ·····                                           |    |
| 2.9 Oper  | ration after Power Failure ·····                                | 04 |
| 2.10 Mir  | nimum Personal Protective Equipment                             | 05 |
| 03        | PRODUCT DESCRIPTION                                             | 06 |
| 3.1 Appe  | earance of the Product ·····                                    | 07 |
|           | uct Characteristics ·····                                       |    |
| 3.3 Parai | meters of Components · · · · · · · · · · · · · · · · · · ·      | 08 |
|           | PCS ·····                                                       |    |
| 3.3.2     | Battery System ····                                             | 08 |
| 3.3.3     | PV Combiner Box (If applicable)                                 | 18 |
| 04        | INSTALLATION                                                    | 20 |
| 4.1 Insta | llation Precautions ·····                                       | 20 |
| 4.2 Parts | s List·····                                                     | 20 |
| 4.3 Insta | llation ·····                                                   | 19 |
| 4.3.1     | PCS Installation                                                | 23 |
| 4.3.2     | Battery System Installation                                     | 25 |
|           | ng                                                              |    |
|           | Battery Side Wiring                                             |    |
|           | Inverter Side Wiring ·····                                      |    |
|           | AC Auxiliary Power-Wiring · · · · · · · · · · · · · · · · · · · |    |
|           | System grounding                                                |    |
|           | PV Side-Wiring                                                  |    |
| 4.4.6     | AC Side-Wiring                                                  | 35 |

|        | 7. Meter Wiring(On-grid mode) ·····                        |    |
|--------|------------------------------------------------------------|----|
| 4.4.8  | 8. Connect the communication cable for the generator ····· | 39 |
| 05     | START-UP AND OPERATION                                     | 41 |
|        |                                                            |    |
| 06     | REMOVE THE COMMUNICATION SHORTING SCREW                    | 42 |
|        |                                                            |    |
| 07     | CONTACT                                                    | 43 |
| Append | ix 1:Meter wiring diagram(DC mode) ·····                   | 44 |
| Append | ix 2:Meter wiring diagram (AC / Hybrid mode) ·····         | 45 |

01 INTRODUCTION

# 1 Introduction

### 1.1 Brief Introduction

This manual applies for Storion-T50/T100 Li-ion battery energy storage system, mainly includes:

## (1) Safety introduction

Introduces the product use, operating notes and qualification of operators of T50/T100 Li-ion battery energy storage system.

## (2) Product description

Describes product appearance, product characteristics, system composition and major functions of T50/T100 Li-ion battery energy storage system.

## (3) System installation

Introduces the installation of T50/T100, including precautions.

## 1.2 Explanation of Terms

## (1) Lithium iron phosphate cell (LiFePO4)

Basic unit constituted by electric poles and electrolytes; each cell is independent and closed.



**NOTE:** Paralleled cell cannot be regarded as an independent cell, even repacked as one whole battery pack.

## (2) Lithium iron phosphate pack

The pack is made up of battery monitoring circuit, battery equalization circuit, electrical connectors, communication interfaces, thermal management devices and multiple Lithium iron phosphate cells.



**NOTE:** For packs from same company, all the details such as physical size, working performance and interface specification should be consistent so that all the packs are compatible and interchangeable.

## (3) Battery management system

Electronic equipment collection for monitoring the operating information of cells, packs and system units (such as voltage, current, temperature, protective parameter of batteries), evaluating the state of charge (SOC), the state of health (SOH) and cumulative processed energy and protecting batteries for safety, etc.

INTRODUCTION 02

## (4) Battery system unit

A combination of batteries through series parallel combination inside and a battery management system (BMS) in which accesses to DC side of a bidirectional converter.

## (5) Storage unit

A combination of a bidirectional converter and a battery system unit, which can be used as an independent load or be controlled directly by monitoring system.

03 SAFETY INSTRUCTIONS

02

# **Safety Instructions**

## 2.1 Keep the Manual

This manual contains important information about operating the system. Before operating, please read it very carefully.

The PCS should be operated in strict accordance with the description in the manual, in case of the damage or loss to equipment, personnel and property.

This manual should be kept carefully for maintenance and reparation.



**NOTE:** To ensure optimal reliability and to meet warranty requirements, the Energy Storage System must be installed according to the instructions in this manual.

## 2.2 Operator Requirements

The operators should get a professional qualification, or be trained by qualified person.

The operators should be familiar with the whole storage system, including compositions and working principles of the system.

The operators should be familiar with the Product Instruction.

While carrying out maintenance work it has to be at least two operators in the field all the time. They can't operate on any equipment until they are all powered off and fully discharged.

It is strictly prohibited for any maintenance operation when equipment is on or charged.



#### NOTE:

- (1) If the installer leaves the site, but the system during debugging should be shut down in time, including batteries and PCS.
- (2) When the system fails, please refer to the troubleshooting table to solve the problem first. If the problem cannot be solved, please contact AlphaESS engineers. If you cannot contact the engineers in time, please shut down the system.

If the equipment is damaged due to unauthorized operation or without following the above precautions, it will not be covered by the warranty.

# 2.3 Protection of Warning Sign

The warning sign contains important information for the system to operate safely and it is strictly prohibited to be torn or damaged.

Ensure that the warning sign is always clear.

The signs should be replaced immediately if damaged.

# 2.4 Setting of Warning Sign for Safety

To prevent erroneous operations and accidents caused by unrelated personnel nearby, the suggestions below should be followed during the instruction, maintenance and repairing:

Obvious signs should be set at the front and rear-level switch in case of accidents caused by false switching.

Warning signs or tapes should be set near the operation areas.

Keys of the system must be pulled out after maintenance or operation.

## 2.5 Live Line Measurement

High voltage in the container. Touching by accident may cause vital electric shock.

Equipment protection must be taken when do live line measurements (e.g. insulation gloves).

The measuring equipment should be connected and used correctly to ensure personnel safety.

When measuring, at least two workers are needed.

## 2.6 Measuring Equipment

Ensure the electrical parameters to match requirements, and related measuring equipment are required when the system is being connected or tested.

Ensure the connection and operation to match the specification in case of electric arc or shock.

## 2.7 Electrostatic Prevention

Contact or improper operation of the printed circuit board or other ESD sensitive components may result in damage to the device. Unnecessary contact should be avoided.

## 2.8 Moisture Prevention

It is very likely that moisture may cause damages to the system.

Do not open the container door if the humidity is higher than 95%.

Repairing or maintaining activities in wet conditions should be avoided or limited.

# 2.9 Operation after Power Failure

The battery system belongs to energy storage system, which maintains fatal high voltage even when the DC side is disconnected. Therefore, touching of the battery output is strictly prohibited.

The PCS maintains fatal voltage even when both the DC or AC side are disconnected, so it must be tested by the multimeter for safety before operation.

# 2.10 Minimum Personal Protective Equipment

For the safety of operators to the system, personal protective equipment are required. During the operation, following protective equipment are required:

| No. | Item               | Notes |
|-----|--------------------|-------|
| 1   | Work clothes       |       |
| 2   | Protective shoes   |       |
| 3   | Protective glasses |       |

When doing maintenance works such as checking cables or wires, measuring voltage, replacing small electrical parts or cleaning modules and brackets, as minimum the following protective equipment are required:

| No. | Item               | Notes                   |
|-----|--------------------|-------------------------|
| 1   | Work clothes       |                         |
| 2   | Protective shoes   |                         |
| 3   | Protective glasses |                         |
| 4   | Insulated gloves   | For touching live parts |



**NOTE:** All metal tools during maintenance should be insulated.

When replacing modules, the following protective equipment are required:

| No. | Item               | Notes                   |
|-----|--------------------|-------------------------|
| 1   | Work clothes       |                         |
| 2   | Protective shoes   |                         |
| 3   | Protective glasses |                         |
| 4   | Insulated gloves   | For touching live parts |



**NOTE:** When replacing modules, the hydraulic lift should be used carefully in case that the modules may fall down. All workmen are suggested to wear high-safety and high strength protective shoes to protect their feet.

PRODUCT DESCRIPTION

03

# **Product Description**

The AlphaESS Storion-T50/T100 energy storage system supports on-grid mode and off-grid mode.

The overall system connection diagram is as follows:

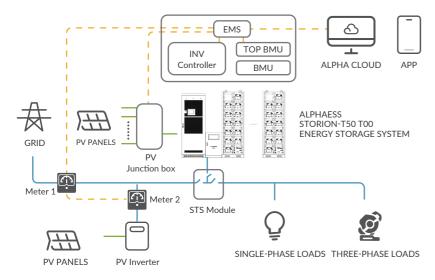



Figure 3-1 Application of the system, on-grid mode

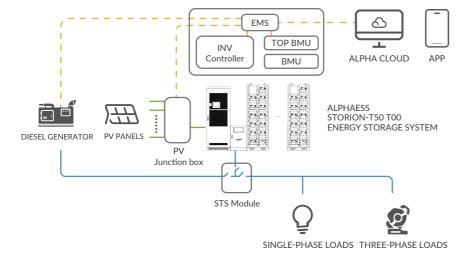



Figure 3- 2 Applications of the system, off-grid mode

PRODUCT DESCRIPTION

# 3.1 Appearance of the Product

07

06

Figure 3-3 shows the appearance of the system.

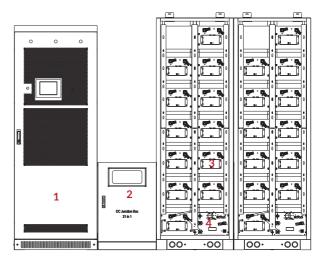



Figure 3-3 T50/T100 without container

Table 1 T50/100 System composition

| Item | Components                      |  |
|------|---------------------------------|--|
| 1    | Storion-T50/100-INV             |  |
| 2    | Junction Box (With TOP BMU Box) |  |
| 3    | M38210-S                        |  |
| 4    | HV900105                        |  |

### 3.2 Product Characteristics

LiFePO4 batteries produced by AlphaESS have longer lifespan and higher reliability, which is able to satisfy the application of energy storage systems.

The system is highly modular designed, and it is easier to assemble, transport and maintain.

The system has a three-level BMS and is allowed for system expansion.

The system adopts full-time equalization technology, which can ensure the consistency of battery and module.

The system is designed as a removable container which is compact, flexible, easy for installation and testing, suitable for the working environment and is available for different kinds of applications.

PRODUCT DESCRIPTION 08

The system has current balance technology between strings in case of circulating current or unbalanced power.

The system has relatively developed thermal management technology so that the consistency of the system environment can be guaranteed.

The system has both remote monitor function and local control function.

The system realizes flexible scheduling of electric power system through communication among BMS, PCS and monitoring system.

The system realizes emergency fire protection by using the automatic alarming and fire extinguishing system

# 3.3 Parameters of Components

### 3.3.1. PCS

## 3.3.1.1 Product Instruction

Storion-T50/T100-INV is a hybrid inverter. It has DC/DC and DC/AC modules. It can transform the DC electricity from PV panels into three-phase AC electricity to supply loads. The DC/DC module can charge batteries by using the electricity generated by PV panels. The DC/AC module is bidirectional so that the battery can also be charged by the grid through the inverter.

# 3.3.1.2 Appearance Instruction

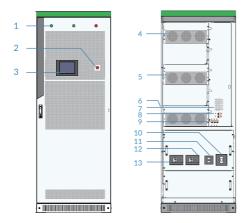



Figure 3-4 Appearance of the PCS

09 PRODUCT DESCRIPTION

# Table 2 Composition of the PCS

| Position | Description               | Description                                    |
|----------|---------------------------|------------------------------------------------|
| 1        | Indicator lights          |                                                |
| 2        | EPO (Emergency Power Off) |                                                |
| 3        | Touch Screen              |                                                |
| 4        | PCS-DC (1~2 module(s))    | 50KW 1 set; 100KW 2 sets                       |
| 5        | PCS-AC (1~2 module(s))    | 50KW 1 set; 100KW 2 sets                       |
| 6        | STS module                | Switching device; Only for the models with STS |
| 7        | Wiring Terminal           | Digital Input and Digital Output               |
| 8        | AUX power supply switch   |                                                |
| 9        | SPD switch                |                                                |
| 10       | AC breaker (Grid)         |                                                |
| 11       | AC breaker (Load)         |                                                |
| 12       | Battery switch            |                                                |
| 13       | PV switch                 |                                                |



**NOTE:** Components 7 Wiring Terminal, 8 AUX power supply switch, 9 SPD switch can be seen after unfold the baffle.

## 3.3.1.3 Technical Parameters

Table 3 Technical parameters of the PCS

|     | ruble o reclinical parameters of the res |                                                   |                  |  |  |
|-----|------------------------------------------|---------------------------------------------------|------------------|--|--|
| No. | Item                                     | Storion-T50-INV                                   | Storion-T100-INV |  |  |
|     | AC Side Data (off-grid)                  |                                                   |                  |  |  |
| 1   | AC Nominal Output Power                  | 50 kW                                             | 100 kW           |  |  |
| 2   | AC Max. Power                            | 55 kW                                             | 110 kW           |  |  |
| 3   | AC Output Voltage                        | 400 V (± 10% configurable)                        |                  |  |  |
| 4   | AC Output Current                        | 72 A (max. 79 A) 144 A (max. 159 A)               |                  |  |  |
| 5   | AC Connection                            | 3-phase and 4-wire system (including transformer) |                  |  |  |
| 6   | AC Frequency                             | 50 Hz / 60 Hz                                     |                  |  |  |
| 7   | Output THDU                              | < 2 %                                             |                  |  |  |

| No. | Item                                                   | Storion-T50-INV                                             | Storion-T100-INV |  |  |
|-----|--------------------------------------------------------|-------------------------------------------------------------|------------------|--|--|
|     | AC Side Data (off-grid)                                |                                                             |                  |  |  |
| 8   |                                                        | Listed: 0.8~1 leading or lagging (Load-depend)              |                  |  |  |
|     | AC PF                                                  | Actual: 0.1~1 leading or laggi<br>(Load-depend)             | ng               |  |  |
| 9   | Overload Capability                                    | 100%~110% long-term;<br>110%~120% 1min;<br>120%~150% 200ms; |                  |  |  |
|     | DC Data (Battery Side)                                 |                                                             |                  |  |  |
| 10  | DC Voltage Range                                       | 250 ~ 520 V                                                 |                  |  |  |
| 11  | One-Way Maximum Input<br>Current                       | 150 A                                                       | 300 A            |  |  |
| 12  | Max. DC Power                                          | 50 kW                                                       | 100 kW           |  |  |
|     | PV Side Data                                           |                                                             |                  |  |  |
| 13  | PV Voltage Range                                       | 520 ~ 900 V (MPPT: 520~800                                  | ) V)             |  |  |
| 14  | PV DC Max. Current (in case of completely consumption) | 192 A                                                       | 384 A            |  |  |
| 15  | Max. PV Power                                          | 100 kW                                                      | 200 kW           |  |  |
|     | General Data                                           |                                                             |                  |  |  |
| 16  | Max Efficiency                                         | 95.5%                                                       |                  |  |  |
| 17  | Dimensions (W x H x L)                                 | 800 x 2160 x 800 mm                                         |                  |  |  |
| 18  | Weight                                                 | 520 kg                                                      | 750 kg           |  |  |
| 18  | Altitude                                               | 3000 m                                                      |                  |  |  |
| 20  | Ingress Protection                                     | IP20                                                        |                  |  |  |
| 21  | Noise                                                  | 70 dB                                                       |                  |  |  |
| 22  | Operation Temperature                                  | -25 °C ~ +50 °C (De-rating over 45°C)                       |                  |  |  |
| 23  | Cooling Concept                                        | Forced Air                                                  |                  |  |  |
| 24  | Humidity                                               | 0~95% (Non-Condensing)                                      |                  |  |  |
| 25  | Communication Interfaces                               | Ethernet, RS-485, CAN                                       |                  |  |  |

# 3.3.1.4 Emergency Stop Switch

The PCS stops working immediately after pushing the button.

If you want to restart the converter, please follow the process below:

A. Conduct clockwise rotation on the emergency stop switch and then loosen the locking status.

PRODUCT DESCRIPTION

B. Push the AC breaker into "OFF" position, then turn the AC breaker "ON"  $\,$  .

C. Launch the machine and operate it as required.

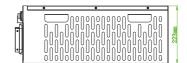

# 3.3.2. Battery System

Table 4 Battery system parameters

| Item | Description                  | Parameter                          | Remark                                           |
|------|------------------------------|------------------------------------|--------------------------------------------------|
| 1    | Nominal discharge power      | 28 kW ~ 50 kW / 100 kW             |                                                  |
| 2    | Energy storage capacity      | According to the project situation | Ambient temperature is 30°C, measured at DC side |
| 3    | Continuous discharge current | 0.5C (continuous)                  |                                                  |
| 4    | Direct voltage               | 250 ~ 520 V                        |                                                  |
| 5    | Communication interface      | RS485, CAN2.0                      |                                                  |

# 3.3.2.1 M38210-S





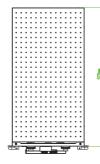



Figure 3-5 M38210-S appearance and dimensions

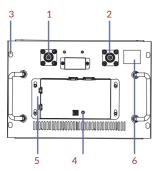



Figure 3-6 M38210-S front view

Table 5 Battery interface definition

| No. | Description           | No. | Description        |
|-----|-----------------------|-----|--------------------|
| 1   | Battery negative pole | 4   | LED light          |
| 2   | Battery positive pole | 5   | COM port (CAN) x 2 |
| 3   | grounding point x 4   | 6   | Information label  |

# Table 6 Battery technical parameters

| No. | Item                                     | Technical parameter | Remark                               |
|-----|------------------------------------------|---------------------|--------------------------------------|
| 1   | Battery model                            | M38210-S            |                                      |
| 2   | Assembly method                          | 12S2P               |                                      |
| 3   | Nominal voltage                          | 38.4 V              |                                      |
| 4   | Voltage range                            | 36 ~ 43.2 V         |                                      |
| 5   | Communication interface                  | 210 Ah              | Max. charge / discharge current 0.5C |
| 6   | Nominal energy                           | 8.1kWh              |                                      |
| 7   | Work power consumption                   | < 2 W               |                                      |
| 8   | Dormant power consumption                | < 100 mW            | Battery dormant state                |
| 9   | Max. charge/discharge current            | 105 A               | Constant current mode                |
| 10  | DC internal resistance                   | < 10 mΩ             | Factory default                      |
| 11  | Transportation/storage temperature range | -20 ~ 45 °C         |                                      |
| 12  | Operating Temperature Range              | -10 ~ 50 ℃          |                                      |
| 13  | Communication mode                       | CAN                 |                                      |
| 14  | Weight                                   | 62kg                |                                      |
| 15  | Size (W x D x H)                         | 332 x 570 x 223 mm  |                                      |
| 16  | Humidity                                 | 15% ~ 85%           |                                      |

# 3.3.2.2 HV900105

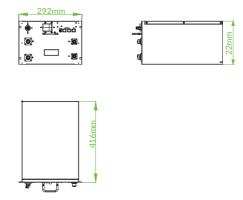



Figure 3-7 HV900105 appearance and dimensions

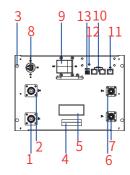



Figure 3-8 HV900105 front view

# Table 7 HV900105 interface definition

| No. | Description                  | No. | Description                     |
|-----|------------------------------|-----|---------------------------------|
| 1   | DC in-                       | 7   | DC out-                         |
| 2   | DC in+                       | 8   | AC input (auxiliary power)      |
| 3   | grounding point x 4          | 9   | AC Air switch (auxiliary power) |
| 4   | Information label            | 10  | BMU COM port (CAN) x 2          |
| 5   | Moulded case circuit breaker | 11  | LMU COM port (CAN)              |
| 6   | DC out+                      | 12  | LED light                       |
|     |                              | 13  | DIP Switch                      |

# NOTE:

For centralized battery DIP Switch should always be 1 on, and the rest off.

Table 8 HV900105 technical parameters

| No. | Item                     | Technical parameter     | Remark |
|-----|--------------------------|-------------------------|--------|
| 1   | High-voltage control box | HV900105                |        |
| 2   | Working voltage range    | 200 ~ 900 V             |        |
| 3   | Modules Connection       | 6~20 M38210-S in series |        |
| 4   | Rated current            | 105 A                   |        |
| 5   | Dimensions (W x D x H)   | 292 x 416 x 223 mm      |        |
| 6   | Weight                   | 20 kg                   |        |
| 7   | Power consumption        | <10 W                   |        |
| 8   | Color                    | RAL7035                 |        |

# 3.3.2.3 Top BMU Box (with EMS)

Functions such as remote monitoring, remote upgrade, etc. can be realized through the TOP BMU Box with EMS.

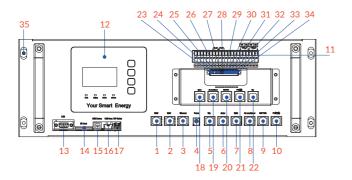



Figure 3-9 Front view of TOP BMU box with EMS

Table 10 Top BMU box with EMS interface definition

| No. | Description  | No. | Description                                                                                       |
|-----|--------------|-----|---------------------------------------------------------------------------------------------------|
| 1   | BMU COM port | 18  | Meter COM port (Used to switch the external communication RJ45 port to RS485 port)                |
| 2   | BMU COM port | 19  | Air conditioner COM port(Used to<br>switch the external communication<br>RJ45 port to RS485 port) |

PRODUCT DESCRIPTION

| 3  | Ethernet                                                           | 20 | INV PCS COM port (Used to switch<br>the external communication RJ45 port<br>to RS485 port)     |
|----|--------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------|
| 4  | Reserve power supply                                               | 21 | PV junction COM port (Used to switch<br>the external communication RJ45<br>port to RS485 port) |
| 5  | Trip COM port                                                      | 22 | Dry contact COM port (Used to switch<br>the external communication RJ45 port<br>to RS485 port) |
| 6  | Meter COM port                                                     | 23 | Reserved                                                                                       |
| 7  | EMS COM port (reserved for external device communication with BMU) | 24 | Reserved                                                                                       |
| 8  | Air conditioner COM port                                           | 25 | Meter RS485A port                                                                              |
| 9  | PCS COM port                                                       | 26 | Meter RS485B port                                                                              |
| 10 | PV junction COM port                                               | 27 | Air conditioner RS485A port                                                                    |
| 11 | Dry contact port                                                   | 28 | Air conditioner RS485B port                                                                    |
| 12 | EMS display screen                                                 | 29 | PCS RS485A port                                                                                |
| 13 | Burning port                                                       | 30 | PCS RS485B port                                                                                |
| 14 | Storage card                                                       | 31 | PV Junction RS485A port                                                                        |
| 15 | Reserved                                                           | 32 | PV Junction RS485B port                                                                        |
| 16 | Reserved                                                           | 33 | Reserved                                                                                       |
| 17 | DIP switch                                                         | 34 | Reserved                                                                                       |
|    |                                                                    | 35 | Grounding point x 4                                                                            |



**NOTE:** TOP BMU box (with EMS) can communicate with outside device, such as PCS, Air conditioner, PV junction box, etc.

If the communication type is CAN, you can connect it from the COM port (from Port 1 to 10) in TOP BMU box to the device by using regular net cables.

If the communication type is RS485, please connect it to the RS485A and RS485B port in TOP BMU box. Besides, the two corresponding COM ports in TOP BMU box should be connected with each other.

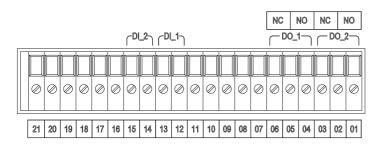



Figure 3-10 Dry contact of TOP BMU

Table 10 Dry contact description

| No. | Description                | No. | Description                          |
|-----|----------------------------|-----|--------------------------------------|
| 1   | Dry contact of generator   | 12  | Dry contact of Fire controller fault |
| 2   | Dry contact of generator   | 13  | Dry contact of Fire controller fault |
| 3   | Reserved                   | 14  | Dry contact of Fire alarm            |
| 4   | Reserveu                   | 15  | Dry contact of Fire alarm            |
| 5   | Dry contact of BMS fault   | 16  |                                      |
| 6   | Dry contact of bivis fault | 17  |                                      |
| 7   |                            | 18  |                                      |
| 8   |                            | 19  |                                      |
| 9   | Reserved                   | 20  | Reserved                             |
| 10  |                            | 21  |                                      |
| 11  |                            |     |                                      |

# Table 11 Technical parameters

| No. | Item                  | Technical parameter                  |
|-----|-----------------------|--------------------------------------|
| 1   | Dimensions(W x D x H) | 490.6 x 323 x 161 mm                 |
| 2   | COM                   | RS-485×4; Ethernet 10/100/1000Mbps×1 |
| 3   | Internal storage      | CD card, 16 GB                       |
| 4   | Events diary          | Recent 5 years happenings            |
| 5   | Work voltage          | 24 V                                 |
| 6   | Power consumption     | <10 W                                |

# 3.3.2.4 Junction box

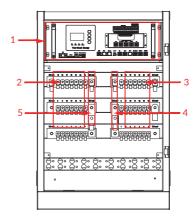



Figure 3-11 Inside of the junction box

Table 12 Wiring definition of the junction box

| No. | Description     | No. | Description     |
|-----|-----------------|-----|-----------------|
| 1   | TOP BMU Box     | 4   | 1 x DC OUT INV+ |
| 2   | 21 x DC IN BAT- | 5   | 1 x DC OUT INV- |
| 3   | 21 x DC IN BAT+ |     |                 |

Table 13 Technical parameters

| No. | Description                          | Technical parameter    |
|-----|--------------------------------------|------------------------|
| 1   | Dimensions (W $\times$ D $\times$ H) | 564 x 439 x 845 mm     |
| 2   | Weight                               | 50 kg                  |
| 3   | Max voltage                          | 1000 V                 |
| 4   | Max current                          | 300 A                  |
| 5   | Color                                | RAL7035(With M38210-S) |

■ PRODUCT DESCRIPTION ■ 18 19

# 3.3.2.5 Battery Rack

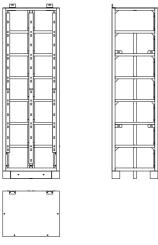



Figure 3-12 Battery rack

Table 14 Technical parameters 1

| No. | Description          | Parameter               |
|-----|----------------------|-------------------------|
| 1   | Dimension(W x D x H) | 743.3 x 602 x 2241.5 mm |
| 2   | Weight               | 116 kg                  |
| 3   | Color                | RAL7035                 |

# 3.3.3 PV Combiner Box (If applicable)

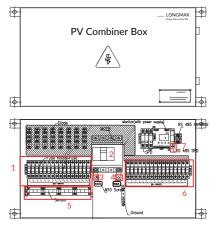



Figure 3-13 PV Combiner box

# Table 15 Wiring definition of the combiner box

| No. | Description                  | No. | Description |
|-----|------------------------------|-----|-------------|
| 1   | PV IN +                      | 5   | HALL Sensor |
| 2   | Moulded Case Circuit Breaker | 6   | PV IN -     |
| 3   | DC OUT+                      | 7   | RS485       |
| 4   | DC OUT-                      |     |             |

# Table 16 Technical parameters

| No. | Description              | Technical parameter |
|-----|--------------------------|---------------------|
| 1   | Dimensions (W x D x H)   | 160 x 800 x 450 mm  |
| 2   | Max voltage              | 1000 V              |
| 3   | Max current (Per string) | 10 A                |

# **4.1 Installation Precautions**

The following sites are not allowed for installation:

A.Sites with high humidity and salinity.

B.Flooded areas.

C.Earthquake areas (additional security measures are required here) .

D.Sites that are higher than 3000 meters above the sea level.

E.Sites that are in an explosive or potentially explosive atmosphere.

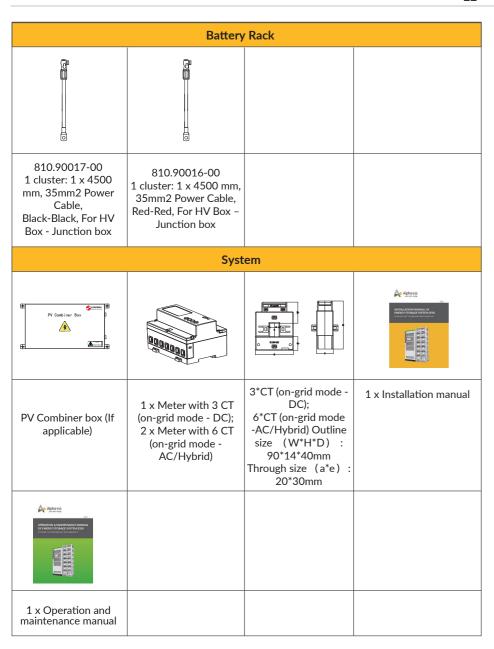
F.Sites with extreme changes of ambient temperature.

G.Sites with highly flammable materials or gases.



**NOTE**: The indoor temperature of the installation system is preferably between 15°C  $\sim$  25 °C

## 4.2 Parts List


Table 17 Parts List

| M38210-S                                                                                                                      |                                                            |                                                                         |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
|                                                                                                                               |                                                            |                                                                         |  |  |
| 810.11014-00 810.11016-00 (N-1) X Power Cable 1 X Power Cable 420 mm, Black - Red, BAT -BAT; (N = Battery Number) BAT -HV BOX |                                                            | 810.11017-03<br>1 X Power Cable<br>740 mm, Black- Black,<br>BAT -HV BOX |  |  |
| *                                                                                                                             |                                                            |                                                                         |  |  |
| 810.00068-00<br>(N-2) Communication Cable<br>350 mm, BAT - BAT                                                                | 810.00068-01<br>2 X Communication Cable<br>750 mm, BAT-BAT | 410.00056-00<br>N X 4 X M6*14                                           |  |  |

HV900105 810.10859-00 810.00035-00 410.00056-00 810.10553-01 1 X Communication Cable 1 X Communication Cable 4 X M6\*14 AC Auxiliary Power Cable 2200 mm, HV Box - HV 500 mm, BAT - HV Box Fixed HV Box 7000 mm Box 810.10878-00 1 X Terminal Resistance DC Junction box (With TOP BMU Box) 810.00058-00 810.10412-00 411.00026-00 1 X Communication 1 X Terminal 4 x M6 410.00080-00 Cable Resistance. **Grounding Serrated** 4 x M6\*16 2500 mm, TOP BMU For HV900105 com Washer **HV BOX** port 810.10644-00 810.10643-00 1system: 1 x 4500 mm, | 1 system: 1 x 4500 mm, 50mm2 Power Cable, 50mm2 Power Cable, 810.10611-00 Black-Black, For Junction Red-Red, For Junction 2 cluster: 1 x box- INV (T50); box - INV(T50): Communication Cable 810.11000-00 810.10999-00 7500 mm EMS - INV 1system: 1 x 4500 mm, 1 system: 1 x 4500 mm. 95mm2 Power Cable, 95mm2 Power Cable, Black-Black, For Junction Red-Red, For Junction box - INV(T100) box - INV(T100);

21

INSTALLATION |



4.3 Installation

4.3.1. PCS Installation

# 4.3.1.1 Removal

When removing the T50/T100-INV, a forklift can be used to remove the whole case. Users can lift the device bottom with a forklift or remove the inverter cabinet through the lifting hole on its top with a crane. It can be transported alone.



Figure 4-1 Moving method for inverter

# 4.3.1.2 Operation Space

During the installation of the PCS, a proper distance from its peripheral walls to the door should be kept as to ensure that the machine door can be opened and closed conveniently and there will be sufficient space for module insertion and extraction, normal heat dissipation and user's operation.

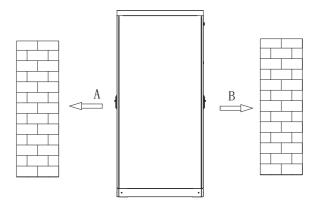



Figure 4-2 Installation space

A≥1,000mm, make sure that the front door of the cabinet can be fully opened and there is sufficient space for ventilation. Users can conveniently insert and extract the module and operate the breaker.

B≥1,000mm, make sure that the rear door of the cabinet can be fully opened. Ventilation and heat dissipation should be guaranteed. Users can also have sufficient space for product maintenance.

## 4.3.1.3 Cabinet Installation

After the cabinet is removed to the installation position with a forklift or a tool. The cabinet should be adjusted and removed to the designed position. Then open the internal door of cabinet, and fix the cabinet with M13 screws, as shown in Figure 4-3.

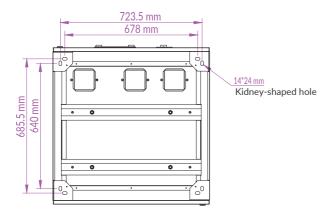
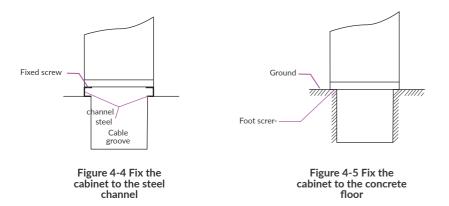




Figure 4-3 Diagram of the cabinet base

When the cabinet needs to be fixed on the steel channel,  $\Phi$ 14 holes can be made in the steel channel. Fix the cabinet to the steel channel with screws, as shown in Figure 4-4.



When the cabinet is fixed to the concrete floor, make holes on the floor and fix the cabinet to the concrete floor with expansion screws, as shown in Figure 4 5.

# 4.3.2. Battery System Installation

## 4.3.2.1 Battery Rack Installation

That depends on the customer

# 4.3.2.2 Battery Installation



Figure 4-6 Battery packages

## Step 1:

Open all the battery packages.

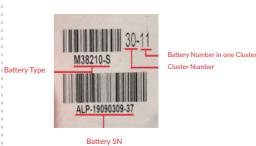



Figure 4-7 Battery label information

# Step 2:

Check the Battery Type and Cluster No. on the battery label.

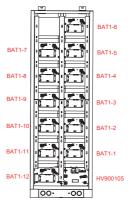



Figure 4-8 Battery placement of single cluster

INSTALLATION

26 27 INSTALLATION

**Step 3:** Put the same cluster of batteries on the same rack with the serial number of 01 to 12 as the above figure shows.



**NOTE:** When you are installing the battery, please avoid scratches because of the heavy battery.

**Step 4:** After completing one rack, please check whether the installed batteries have the same cluster No.

**Step 5:** If there are more than one rack, please repeat step 3 and 4 to install the other battery racks as below Figure shows.

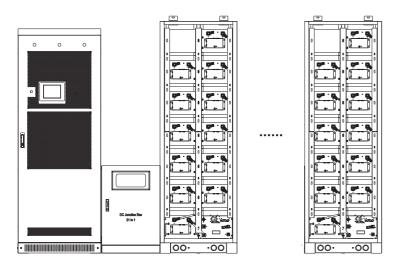



Figure 4-9 Battery placement of all clusters

# 4.4 Wiring

# 4.4.1. Battery Side Wiring

# **4.4.1.1 Communication Cables Connection**

### A.

Please refer to the following figure, connect the communication cables among batteries of each cluster. These cables are in each battery parts list.

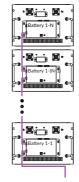



Figure 4-10 Communication cables connection in one cluster

#### B.

Take the terminal resistance in the HV900105 parts list and insert it into the last battery COM port of each battery cluster. You can see the detailed information in Figure 4-11.

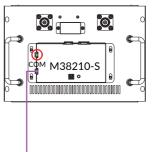



Figure 4-11 Terminal resistance in the last battery of each cluster

#### $\mathbf{c}$

Connect the bottom battery (COM Port) to HV900105 (LMU Port) by using the communication cables from HV900105 parts list. Please see Figure 4-12.

#### D.

Connect HV900105 (COM Port) to TOP BMU box (COM Port, Port 1 or 2) by using the communication cable from TOP BMU part list. Please see Figure 4-12.

28

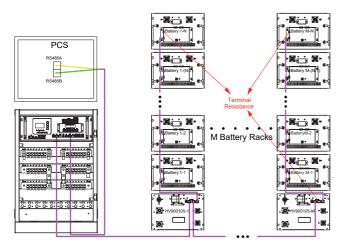



Figure 4-12 Battery side communication cables connection

E.

Connect the PCS and EMS after opening the PCS cabinet front door and removing the panel of the right side. You can see the communication interface at the right bottom. Then please connect TOP BMU box (Port29-485A and Port 30 -485B) to the PCS (Port 9 - 485A and Port 10 - 485B) by using the RS485 cable from the parts list , and connect TOP BMU box dry contact port (Port 05 and Port 06) to the PCS (Port 1 and Port 2) by using the RS485 cable from the parts list as Figure 4 13 shows.

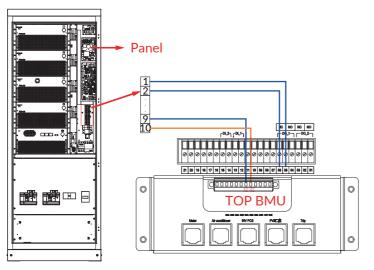



Figure 4-13 Connection between EMS and PCS

The terminal strip ports of PCS are defined as is shown in Table 18.

Table 18 Definition of terminal strip ports of PCS

| Item                        | Terminal | Notes                     |  |  |
|-----------------------------|----------|---------------------------|--|--|
| Input Signal Loop           |          |                           |  |  |
| 1                           | IN1      | BMS Fault Signal          |  |  |
| 2                           | IN1 GND  | Divis Fualt Signal        |  |  |
| 3                           | IN4      | On/Off-grid Switch Node 1 |  |  |
| 4                           | IN4 GND  | On/On-grid Switch Node 1  |  |  |
| 5                           | IN5      | On /Off and Switch Nada 2 |  |  |
| 6                           | IN5 GND  | On/Off-grid Switch Node 2 |  |  |
| External Communication Loop |          |                           |  |  |
| 7                           | CAN H    | From External BMS         |  |  |
| 8                           | CAN L    | Trom External Bivis       |  |  |
| 9                           | 485 A    | To External RS485         |  |  |
| 10                          | 485 B    | TO EXCEINE NOTOS          |  |  |
| External EPO Input          |          |                           |  |  |
| 11                          | EPO-C    | External Engagement Stars |  |  |
| 12                          | EPO-NO   | External Emergency Stop   |  |  |

#### F.

Connect the COM port 9 and COM port 10 of TOP BMU box with a regular net cable.

## G.

The last COM port of HV900105 without connected cable should be inserted with the terminal resistance from DC Junction box parts list. Please see the detailed information as Figure 4-14 shows.

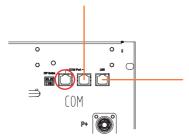



Figure 4-14 Terminal resistance in one of the HV900105

H.

Connect TOP BMU COM port 3 to Ethernet.

# 4.4.1.2 Battery Power Cables Connection

The battery DC positive and negative port of HV900105 can be directly connected to the BAT+ and BAT- of DC Junction box as Figure 4-15 shows.

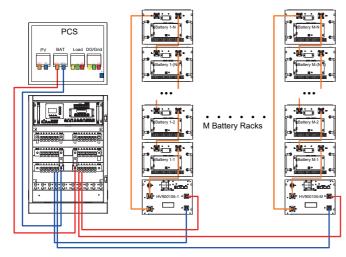



Figure 4-15 Battery side power cables connection

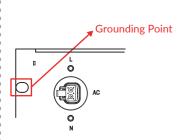



Figure 4-12 Grounding point

After wiring the battery, please fix each box with the four screws and four grounding serrated washers to the racks. These screws and grounding serrated washers are shipped in the corresponding batteries, HV900105, Top BMU box packages.

# 4.4.2. Inverter Side Wiring

The wiring of the PCS is down inlet/outlet, and the incoming and outlet wiring holes located in bottom of the PCS cabinet. The cables put into the cable trough via the wiring holes at the base. The cooper bars for wiring can be seen after opening the front door and dismantling the dam-board. As for wiring requirements, single cable or multiple cables with proper wire diameter should be selected.

The wiring should be in accordance with the National Electrical Code or other local standards.

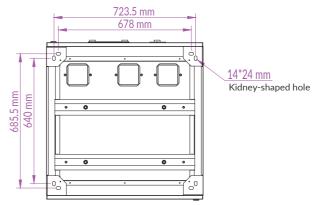



Figure 4-17 PCS rack wiring hole and corresponding copper bars

Open the dam-board beside the switch and then the wiring copper bar can be seen as Figure 4-18 shows.

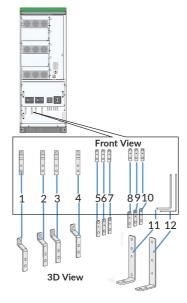
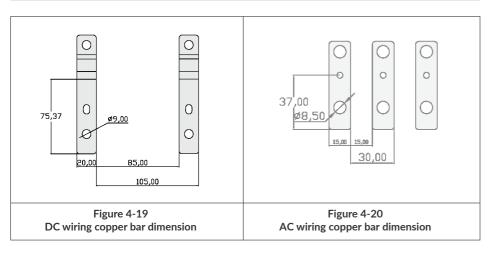




Figure 4-18 PCS wiring copper bars designation with STS module

Table 19 PCS wiring copper bars description

| Position | Designation | Description                                    |
|----------|-------------|------------------------------------------------|
| 1        | PV +        | PV positive port, dimension is shown as below. |
| 2        | PV -        | PV negative port                               |
| 3        | Battery +   | Battery positive port                          |
| 4        | Battery -   | Battery negative port                          |
| 5        | A (Load)    | Phase A                                        |
| 6        | B (Load)    | Phase B                                        |
| 7        | C (Load)    | Phase C                                        |
| 8        | A (Grid)    | Phase A                                        |
| 9        | B (Grid)    | Phase B                                        |
| 10       | C (Grid)    | Phase C                                        |
| 11       | N           | Phase N                                        |
| 12       | Grounding   |                                                |



# 4.4.3. AC Auxiliary Power-Wiring

Please connect the AC auxiliary power cable to each HV900105 with the Grid/GEN L phase (anyone of L1, L2 and L3 phase) and N pole of PCS as the following Figure 4-21 shows.

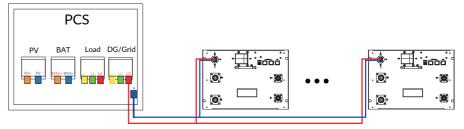



Figure 4-21 AC Auxiliary Power Cable Connection



33

The auxiliary power cable bond must be placed above the AC power cable bond. After this please tighten the screw.

# 4.4.4. System grounding

The grounding of power modules/PCS connection with the rack should go through hangers on the module.

As for rack grounding, the rack bottom is installed with grounded cooper bars. The cable diameter can be refereed to the following table.



# **WARNING**

Notice that the AC output neutral is not connected to ground.

Table 20 Grounding PE cable description

| Rated power | Copper PE cable section recommendation (mm²) |
|-------------|----------------------------------------------|
| 50kW        | ≥16                                          |
| 100kW       | ≥25                                          |



# WARNING

Rack and modules need to be grounded reliably! The grounding resistance should be less than

INSTALLATION

# 4.4.5. PV Side-Wiring

A.Use a multimeter to measure the PV port voltage and ensure that the voltage is within the input voltage range of the PCS.

B.Turn off the PV switch on PCS. Use a multimeter to measure and confirm that there is no voltage between the positive and negative terminals of the PV input. Then connect cables.

C.Connect PV positive pole to "DC+" of PV side DC switch on PCS.

D.Connect PV negative pole to "DC-" of PV side DC switch on PCS.

Table 21 DC cable description

| Rated power | Copper DC cable section recommendation (mm²) |
|-------------|----------------------------------------------|
| 50kW        | ≥35                                          |
| 100kW       | ≥95                                          |

The PV connection is shown in Figure 4-22

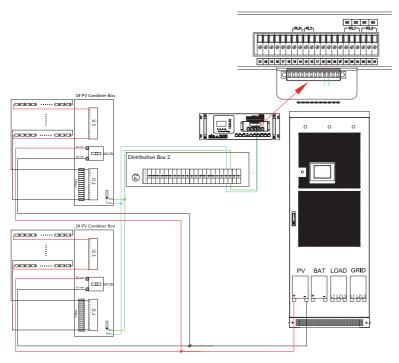



Figure 4-22 Connect the power cable of the PV, With Combiner box

INSTALLATION

A. Insert the PV positive pole through the waterproof terminal into the PV+ and lock it with a screwdriver.

- B. Similarly, insert the PV negative pole through the waterproof terminal into the PV— and lock it with a screwdriver. Remember that the negative pole passes through the Hall.
- C. Connect the power cable of the PV Combiner box to the PV side of the PCS, as shown in Figure 4-22.
- D. Connect the RS485 communication cable of the PV combiner box to the RS485 interface of the TOP BMU, as shown in Figure 4-22.



35

34

#### NOTE

There are numbers on the PV combiner box, it have to one-to-one correspondence. For example, "1+" corresponds to "1-", "2+" corresponds to "2-", and so on.

E. Connect another PV Combiner box and repeat steps A), B), C).



#### NOTE:

Only 1 PV combiner box can communication with Top BMU, and all boxed can connect in parallel.

# 4.4.6. AC Side-Wiring

A.Ensure that the phase consequence of wires should be a positive consequence.

B.Disconnect AC output distribution switch in PCS.

C.Use a multimeter to measure and ensure that the cables connected to the terminals are electrically neutral.

D.In on-grid mode, A(L1)/B(L2)/C(L3) phases of AC output distribution switch of utility grid and PE are respectively connected to A(L1)/B(L2)/C(L3) phases of utility grid and PE. E.In off-grid mode, A(L1)/B(L2)/C(L3) phases of AC output distribution switch of PCS and PE are respectively connected to A(L1)/B(L2)/C(L3) phases of generator AC output and PE.

F.Confirm wiring firmness.

INSTALLATION |

# Table 22 AC cable description

| Rated power | Copper AC cable section recommendation (mm²) |
|-------------|----------------------------------------------|
| 50kW        | ≥25(Load port); ≥50(Grid port);              |
| 100kW       | ≥50(Load port); ≥95(Grid port);              |



# WARNING

Take a multimeter to make sure that there is no voltage at connection points during wiring.



### NOTICE:

All wires are connected to the wiring terminals externally from the wiring holes at the bottom of PCS. After wiring, fireproofing mud should be used to seal the wiring holes.

Please refer to the following diagram to connect power cables.

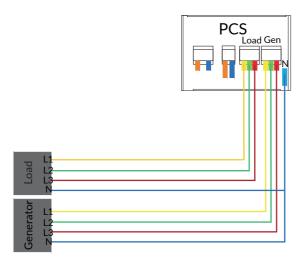



Figure 4-23 AC-Side wiring diagram, off-grid mode

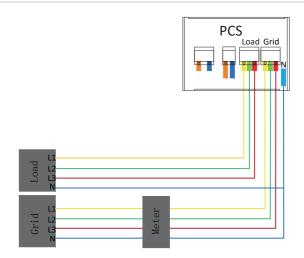



Figure 4-24 AC-Side wiring diagram, on-grid mode

# 4.4.7. Meter Wiring(On-grid mode)

37

36

Please refer to the following diagram to connect the CT meter.

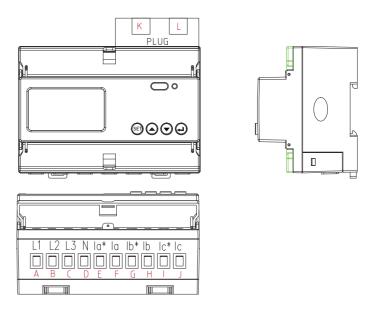



Figure 4-25 Appearance of the meter

# **Table 23 Ports Description**

| Object | Name                               | Description                                                                                    |
|--------|------------------------------------|------------------------------------------------------------------------------------------------|
| А      | Power port 1                       | Connect to L1                                                                                  |
| В      | Power port 2                       | Connect to L2                                                                                  |
| С      | Power port 3                       | Connect to L3                                                                                  |
| D      | Power port N                       | Connect to N                                                                                   |
| Е      | CT1 sampling cable wiring port la* | Connect to S1 of CT1                                                                           |
| F      | CT1 sampling cable wiring port la  | Connect to S2 of CT1                                                                           |
| G      | CT2 sampling cable wiring port lb* | Connect to S1 of CT2                                                                           |
| Н      | CT2 sampling cable wiring port lb  | Connect to S2 of CT2                                                                           |
| I      | CT3 sampling cable wiring port lc* | Connect to S1 of CT3                                                                           |
| J      | CT3 sampling cable wiring port Ic  | Connect to S2 of CT3                                                                           |
| К      | Meter communication port 1         | Connect to EMS or other meters through network cable to realize communication between devices. |
| L      | Meter communication port 2         | Connect to EMS or other meters through network cable to realize communication between devices. |

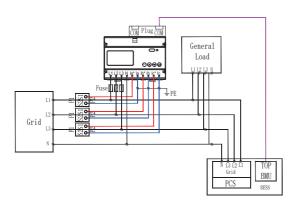



Figure 4-26 Meter wiring diagram (DC mode)
Please check the page 44 for the detailed picture

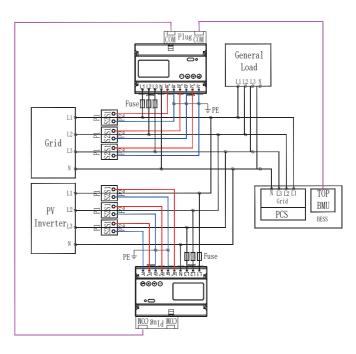



Figure 4-27 Meter wiring diagram (AC / Hybrid mode)
Please check the page 45 for the detailed picture

The meter communication cable should be connected to TOP BMU COM 6.

# 4.4.8. Connect the communication cable for the generator

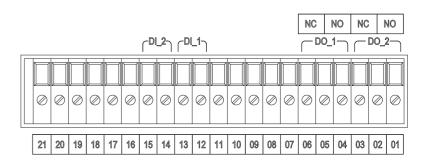



Figure 4-28 Dry contact of TOP BMU

INSTALLATION

40 41

A.Connect DO\_2 to the dry contact of the generator, port 2 and 3 (normally closed contact), 1 and 2 (normally open), you can connect the generator dry contact to control the 1 and 2.

B.Please connect the generator controller to dry contact as the Figure 4-29 shows.

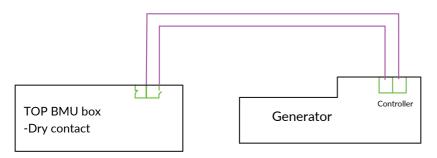
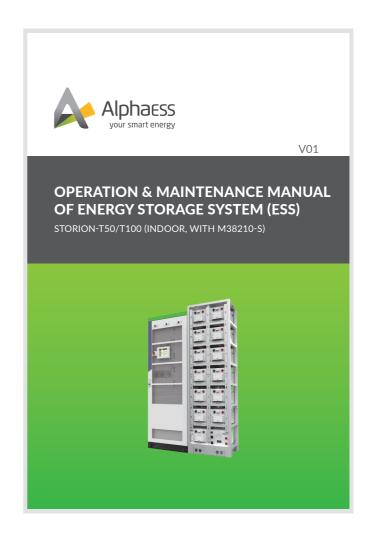



Figure 4-29 Connecting the communication cable for generator



**NOTE:** The normal state of dry contact is disconnected and switching on represents starting the generator.


# 4.4.9. Sealing Measures



**NOTE:** When the wiring is completed, use fireproof mud or other non-inflammable and well-sealed materials to block the inlet.

O5 Start-up and Operation

Please refer to the Operation Manual for details.



START-UP AND OPERATION

# PCS Dry Contact Enable

When the system is running normally and the system starts commission, remove the communication shorting screw on the PCS (terminal 1, 2). For the detailed commission steps, refer to the commission list.

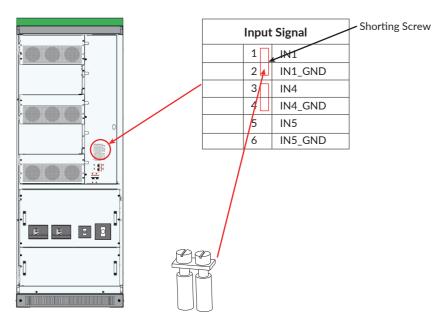
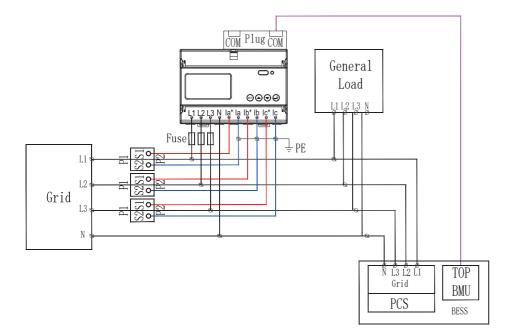



Figure 6-1 Remove the communication shorting screw

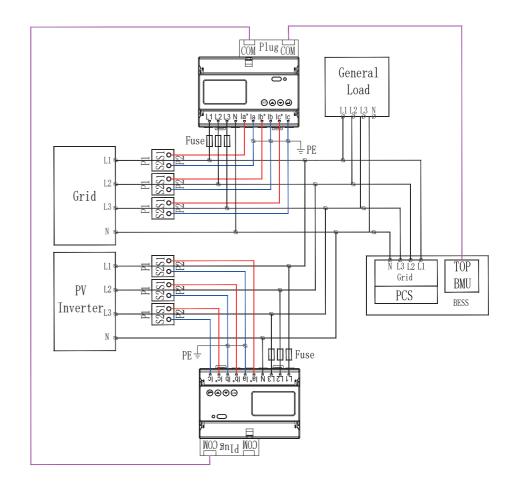


**NOTE:** Don't throw away the communication shorting screw in case they need to be reused.

O7 Contact


43

If you have technical problems with our products, please contact us. Contact information is under the IMPRINT catalog at the beginning of this manual. Please provide the following information to help you with the necessary assistance:


- A. Equipment model
- B. Serial number
- C. Battery type and number, or PV modules number and string type
- D.Communication type
- E. Firmware version
- F. Error number and error message

45

# Appendix 1:Meter wiring diagram(DC mode)



Appendix 2:Meter wiring diagram (AC / Hybrid mode)



METER WIRING DIAGRAM (AC / HYBRID MODE)